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Reynolds stress modelling of rectangular open-channel �ow
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SUMMARY

A Reynolds stress model for the numerical simulation of uniform 3D turbulent open-channel �ows
is described. The �nite volume method is used for the numerical solution of the �ow equations and
transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER
algorithm, and the power-law scheme is used to discretize the convection and di�usion terms in the
governing equations. The developed model is applied to a �ow at a Reynolds number of 77 000 in a
rectangular channel with a width to depth ratio of 2. The simulated mean �ow and turbulence structures
are compared with measured and computed data from the literature. The computed �ow vectors in the
plane normal to the streamwise direction show a small vortex, called inner secondary currents, located
at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This
small vortex causes a signi�cant increase in the wall shear stress in the vicinity of the free surface.
A budget analysis of the streamwise vorticity is carried out. It is found that both production terms
by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of
secondary currents. Copyright ? 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Open-channel �ows are characterized by complicated �ow structures, even for simple geometry,
such as that of a rectangular channel. This is largely due to wall and free surface
boundaries. They play an important role in the distribution of turbulent energy. Walls and
free surface reduce the turbulence intensity in the direction normal to the surface, and the
decreased turbulence intensity is redistributed in the other two directions. The anisotropy of
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turbulence, which is strengthened by wall and free surface boundaries, is known to generate
secondary currents in open-channel �ows.
Secondary currents observed in a straight open-channel are classi�ed as secondary currents

of Prandtl’s second kind. Although the magnitude of the secondary currents is only about
2% of the maximum streamwise velocity [1], they have a major e�ect on the mean �ow and
turbulence structures. Due to the secondary currents, the location of the maximum streamwise
velocity occurs below the water surface [2], and the velocity contour lines are bulged towards
the corners [3]. Secondary currents also increase bed shear stress near the corner [4], which
may a�ect the sediment transport capacity of the open-channel signi�cantly.
Previous studies have revealed that secondary motions in the cross section of open-channel

�ows consist of two large vortices, namely a free surface vortex and a bottom vortex [1, 5].
However, recently, Grega et al. [6] and Hsu et al. [7] reported on the existence of inner
secondary currents at the juncture of the free surface and sidewall in the rectangular channel.
The small-sized vortex, as seen in Figure 1, a�ects the mean �ow and turbulence structure,
thus signi�cantly a�ecting the shear stress distribution at the wall in the region close to the
free surface.
For numerical simulations of 3D turbulent open-channel �ows, as in other engineering

problems, the k–� model has been the preferred choice in hydraulics [8–14]. However, since
the standard k–� model is an isotropic turbulence closure based on the eddy viscosity concept,
it cannot reproduce directional e�ects of turbulent �ows such as secondary motions of �uids
in the plane normal to the streamwise direction [15, 16].
In general, there are three principal approaches for improving turbulence models based

on the eddy viscosity concept [17]. One is to generalize the linear stress rate of the strain
law by including a nonlinear e�ect. An example of this is the nonlinear k–� model, an
anisotropic turbulence closure. This model has been employed to predict open-channel �ows
with secondary currents [15, 18, 19]. Although their modelling was successful in simulating
secondary currents in a compound channel, especially at the juncture of the main channel and

Figure 1. Schematic view of secondary �ows in rectangular open-channel.
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RECTANGULAR OPEN-CHANNEL FLOW 1321

�oodplain, details of the mean �ow and turbulence structure were not accurately simulated
by the nonlinear k–� model. For example, the velocity-dip phenomenon can hardly be found
in the computed velocity pro�les.
The second approach is to use algebraic relationships for Reynolds stresses (Algebraic Stress

Model: ASM). The ASM is economical because it solves algebraic relationships that have
been derived or simpli�ed from the Reynolds stress transport equations. Previously, Naot and
Rodi [5] proposed an ASM to numerically simulate open-channel �ows with secondary cur-
rents. Following this, many researchers simulated open-channel �ows using the ASM [20–22].
However, since the ASM does not solve the exact equations for Reynolds stresses, but solves
empirical relationships for computational stability instead [23], the simulated mean �ow and
turbulence structures are not su�ciently accurate.
Finally, the third approach is to determine the Reynolds stress by solving the Reynolds

stress transport equations directly (Reynolds Stress Model: RSM). Unlike the ASM,
in the RSM, it is not necessary to introduce ad hoc expressions for the Reynolds stress.
However, due to the complexity of the model, the application of the RSM to open-channel
�ows is limited. Reece [24] is the �rst investigator who developed the RSM based on Launder
et al.’s [25] model, and he simulated both square duct �ow and open-channel �ow. Later,
Cokljat and Younis [16, 26] and Basara and Cokljat [27] proposed the RSM for numerical
simulations of free surface �ows in a rectangular channel and in a compound channel and
found good agreement between predicted and measured data. However, no previous studies
have appeared on the RSM applied to open-channel �ows that focus on the detailed mean
�ow and turbulence structure including inner secondary currents.
The purpose of the present study was to develop a RSM for the numerical simulation of

rectangular open-channel �ows. The proposed RSM consists of Speziale et al.’s [28] model
for the pressure–strain term, Mellor and Herring’s [29] model for the di�usion term, and
Rotta’s [30] model for the dissipation term. Using the developed model, the mean �ow and
turbulence structures were simulated and the results obtained were compared with existing
numerical and experimental data. The model was veri�ed to reproduce secondary currents
including inner and outer free surface vortices and bottom vortex properly. A budget analysis
of the streamwise vorticity equation was also performed to investigate the mechanism by
which these secondary currents are generated.

MATHEMATICAL MODEL

Consider steady open-channel �ow at a high Reynolds number, and assume that the �ow is uni-
form in the streamwise direction. If we denote the mean and turbulent velocities by ui and u′

i
in the i-direction, respectively, then the continuity and momentum equations are given by
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where x, y, and z are the streamwise, transverse, and vertical directions, �u the streamwise
mean velocity, �v and �w the components of the secondary motion as sketched in Figure 1, �p
the mean pressure, � the kinematic viscosity, −u′

iu′
j the Reynolds stress, g the gravitational

acceleration, and So the channel slope.
The Reynolds stress in the momentum equations is obtained by solving the transport equa-

tions for Reynolds stress Rij (= u′
iu′
j) such as
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+Dij − �ij +�ij (5)

where Dij is the transport of Rij by di�usion, �ij the rate of dissipation of Rij, and �ij the
transport of Rij due to turbulent pressure–strain interactions. Choi and Kang [31] carried out
numerical experiments of various RSMs in computing the vertical structure of an open-channel
�ow by comparing three di�usion models and �ve pressure–strain models. They found that
the di�usion model of Mellor and Herring [29] and the pressure–strain model of Speziale
et al. [28] reproduce the measured data best. These models are used herein. Choi and
Kang’s [31] result conforms to the �ndings from an earlier study by Demuren and Sarkar [32],
who tested three di�usion models and �ve pressure strain models in computing channel �ows
without free surface.
For Dij, the following model proposed by Mellor and Herring [29] is used:
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where Cs is a model constant (=0:22=3) and k is the turbulent kinetic energy (=Rii=2). In
the present study, for the dissipation rate of Rij, the following model by Rotta [30] is used:

�ij= 2
3��ij (7)

in which � is the dissipation rate of k and �ij the Kronecker’s delta. The dissipation rate of
k is obtained by solving the standard transport equation such as
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where Pk is the rate of production of turbulence kinetic energy and C� (=0:18), C�1 (=1:45),
and C�2 (=1:90) are empirical constants.
The last term in Equation (5) is the pressure–strain term which acts to redistribute turbulent

kinetic energy among the Reynolds stresses. The present RSM employs the following model
proposed by Speziale et al. [28] for �ij in Equation (5), named SSG model hereafter

�ij = �0�bij + �1�(bikbjk − 1=3 · bmnbnm�ij) + �2kSij + �3Pkbij

+ �4k(bikSjk + bjkSik − 2=3 · bklSkl�ij) + �5k(bikWjk + bjkWik) (9)
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where bij is the anisotropy tensor, Sij the rate of the strain tensor, Wij the rotation ten-
sor, and �0–�5 empirical coe�cients. The values of these parameters used herein are from
Speziale et al. [28], i.e. �0 = − 3:4, �1 = 4:2, �2 = 0:8− 1:3 (bmnbnm)1=2, �3 = − 1:8, �4 = 1:25,
and �5 = 0:4. In Equation (9), bij, Sij, and Wij are given, respectively, by

bij=
Rij
2k

− 1
3
�ij (10a)

Sij=
1
2

(
@ui
@xj

+
@uj
@xi

)
(10b)

Wij=
1
2

(
@ui
@xj

− @uj
@xi

)
(10c)

In the right-hand side of Equation (9), the �rst term is the usual Rotta term for the return
to isotropy, which is included in most Reynolds stress models. The second term is a non-
linear contribution to the return to isotropy. Both terms represent the slow contribution to
the pressure–strain correlation, while the remaining four terms represent rapid contributions.
The third term is linear and the fourth is quadratic in bij. The �fth and the last terms are
also linear in bij, and these two terms are known to make a major contribution in the rapid
portion.
The damping e�ects of the wall and the free surface are very similar, and act to increase the

level of anisotropy. However, in the vicinity of the free surface, the mean velocity gradients
are negligible. This is the reason why the SSG model used here was found not to be
very suitable near the free surface [27]. Therefore, in order to consider the damping e�ects
at the free surface, the following combinations of Shir [33] and Gibson and Launder [34]
models are added to the pressure–strain term:
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where Cfs;1 (=0:5) and Cfs;2 (=0:1) are model constants and fs the free surface damping
function given by

fs=

(
L

z−1n + CfL

)2
(12)

where L is the turbulence length scale (=C3=4� k1:5=(��)), zn the vertical distance from the
free surface, and Cf (=0:16) an empirical constant. Model constants Cfs;1 and Cfs;2, were
given by Shir [33] and Gibson and Launder [34], respectively, and Cf was calibrated by
Cokljat [35] for free surface �ows.
In the present study, the �nite volume method is used to solve the �ow equations and

the transport equations of the Reynolds stress components. Since the �ow is assumed to be
fully developed and uniform in the streamwise direction, the spatial derivatives with respect
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to the streamwise direction are ignored in the �ow equations. This reduces the �ow equations
parabolic in the streamwise direction and elliptic in the transverse direction. For the solution
strategy, the SIMPLER algorithm proposed by Patankar and Spalding [36] is employed. The
SIMPLER algorithm, a revised SIMPLE algorithm, is used to obtain the cross stream pressure
�eld. For the discretizations of the convection term and di�usion term in the governing equa-
tions, the power-law di�erencing scheme by Patankar [37] is used. A detailed computational
procedure is described in Reference [38].
Boundary conditions are required at the walls and at the free surface. It is assumed that

the �ow at the node closest to the wall obeys the standard logarithmic law. Since local
equilibrium is assumed in the vicinity of the wall, the dissipation rate is set equal to the
production of the turbulence kinetic energy. For the Reynolds normal stress at the wall, the
zero gradient condition is used. The Reynolds shear stress at the wall vicinity is set equal to
the value from the logarithmic law. The free surface is treated as a symmetric plane for all
dependent variables except for the dissipation rate of the turbulent kinetic energy (�). For �,
the relationship by Naot and Rodi [5] is prescribed at the free surface in order to increase
the dissipation level of turbulence kinetic energy.

MEAN FLOW AND TURBULENCE STRUCTURES

Using the developed RSM, an open-channel �ow was simulated. A water depth of 0.1m, a
channel width of 0.2m, and a slope of 0.00059 yield a streamwise mean velocity of 0.387,
a maximum streamwise velocity of 0.46m=s, and a shear velocity of 0.014m=s at the bot-
tom. The Reynolds number based on the streamwise mean velocity and hydraulic radius
is 77 000. The numbers of grid points used in the present study are 100 and 120 in the
y- and z-directions, respectively. The results, simulated by the RSM, are compared not only
with experimental measurements by Nezu and Rodi [1] but also with another RSM data by
Cokljat [35] and LES data by Shi et al. [39]. The RSM by Cokljat [35] is composed of
Launder et al.’s [25] model for the pressure–strain correlation term, Daly and Harlow’s [40]
model for the di�usion of Rij, and Rotta’s [30] model for the dissipation of Rij. The exper-
imental or simulated data used for comparisons are from �ows at relatively high Reynolds
numbers ranging from 73 000 to 97 000. Thus, these values of the Reynolds numbers are
comparable to that of the present simulations.
Figure 2 shows the contours of the streamwise mean velocity normalized by its maximum

value. It can be seen that the streamwise mean velocity predicted by the present RSM is in
good agreement with the measured pro�les and with the other simulated data. Note that the
velocity contour lines predicted by the RSM are bulged towards the juncture between the
sidewall and free surface, which is not seen in the other pro�les in the �gure. This is caused
by inner secondary currents in the vicinity of the juncture, which are discussed below.
Secondary current vectors are given in Figures 3(a)–(d). In all �gures, the free surface vor-

tex and the bottom vortex are observed. Speci�cally, the overall pattern and the magnitudes
of the secondary currents predicted by the present RSM are seen to coincide with measured
and other numerical results. In Figure 3(a), the computed maximum magnitude of the sec-
ondary current vectors appears to be about 2% of the maximum value of the streamwise
mean velocity, which is consistent with previous �ndings, i.e. Naot and Rodi [5], Tominaga
et al. [41], and Cokljat and Younis [16]. Only in the velocity vectors predicted by the present
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RECTANGULAR OPEN-CHANNEL FLOW 1325

Figure 2. Streamwise velocity contours (�u= �umax): (a) present RSM;
(b) experiment [1]; (c) RSM [35]; and (d) LES [39].

RSM, namely in Figure 3(a), a small vortex is observed at the juncture between the free
surface and the sidewall. Grega et al. [6] referred to this small vortex as the inner secondary
vortex and to the large vortex as the outer secondary vortex. Despite the low intensity of the
inner secondary vortex, whose magnitude is known to be about 1% of the mean value of the
streamwise velocity [6], it is expected that the inner secondary currents a�ect the distribution
of the shear stress at the sidewall [42]. This small vortex, however, is not observed in the
other pro�les in Figure 3 probably due to poor resolution in the experimental measurements
and in the computational grids [7].
Figure 4 presents the distribution of turbulence intensity u′ normalized by the shear velocity

at the bottom. Overall, the agreement between the numerical prediction by the RSM and the
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Figure 3. Secondary current vectors: (a) present RSM;
(b) experiment [1]; (c) RSM [35]; and (d) LES [39].

measured pro�le by Nezu and Rodi [1] appears to be quite good. As stated before, the
wall boundary and the free surface tend to reduce the turbulence intensity in the direction
normal to the boundary, and the decreased amount of turbulence intensity is redistributed to
those in directions parallel to the boundary, i.e. in both longitudinal and transverse directions.
This redistribution of turbulence intensity increases the level of anisotropy in the vicinity of
the boundary. In Figure 4, it can be seen that the turbulence intensity u′ increases along
the boundaries, i.e. the free surface, sidewall, and bottom. This is a direct e�ect of the
redistribution of turbulence intensity. Note also that the contour lines of the turbulence intensity
u′ are bulged towards the juncture of the bottom and sidewall and towards the juncture of
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Figure 4. Turbulence intensity (u′=u∗b): (a) present RSM; and (b) experiment [1].

Figure 5. Turbulence intensity (w′=u∗b): (a) present RSM; and (b) experiment [1].

the free surface and sidewall, and the turbulence intensity u′ increases towards each juncture.
However, the bulge in the contour lines towards the upper juncture is not clearly observed in
Figure 4(b). In addition, it should be noted that the minimum for u′ occurs below the water
surface, which is related with the velocity dip associated with secondary currents.
Figure 5 gives the distribution of the turbulence intensity w′ normalized by the shear velocity

at the bottom. The computed turbulence intensity w′ was compared with the measured data
by Nezu and Rodi [1], and good agreement was found. In the �gure, it can be seen that w′

decreases towards the water surface, while it increases towards the sidewall. This is also due
to the redistribution of turbulence intensity along the boundary. In both results, the contour
lines of the turbulence intensity are seen to bulge towards the juncture of the bottom and
sidewall.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1319–1334
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Figure 6. Reynolds stress (−u′w′=u2∗b): (a) present RSM; and (b) experiment [1].

The distribution of Reynolds stress (−u′w′) normalized by the squared shear velocity at the
bottom is given in Figure 6. In this �gure, the Reynolds stress pro�le simulated by the RSM
compares favourably with the measured distribution. A general tendency observed is that the
Reynolds stress increases as it approaches the bottom. It should also be noted in the �gure that
the Reynolds stress increases with the distance from the sidewall for y=H¡0:6. For z=H¿0:7,
the Reynolds stress is negative, which is due to a velocity dip caused by secondary currents.
Figure 7 shows the distribution of shear stress at the sidewall, which is normalized by its

mean value. For comparisons, both measured data by Nezu and Rodi [1] and various simulated
data sets are given in the �gure. All pro�les in the �gure indicate that the shear stress at
the sidewall increases rapidly in the region close to the bottom, and becomes nearly uniform
for 0:16 z=H60:9. However, the wall shear stress, as computed by the present RSM and
LES data by Broglia et al. [42], shows a rapid increase for z=H¿0:9. The shear stress at
the free surface appears to be about 60% higher than the mean value in the middle region.
This is caused by inner secondary currents occurring at the juncture of the free surface and
sidewall. That is, the inner secondary currents transfer high momentum from the centre to the
sidewall near the free surface. Grega et al. [6] and Broglia et al. [42] con�rmed this through
laboratory experiments and LES. However, this phenomenon is not seen in the shear stress
distributions at the sidewall by Cokljat [35], Shi et al. [39], and by Nezu and Rodi [1].

MECHANISM OF GENERATION OF SECONDARY CURRENTS

In order to investigate the mechanism by which secondary currents are generated in an open-
channel �ow, the following streamwise vorticity equation is considered:

�v
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where � is the streamwise vorticity (= @�v=@z − @ �w=@y). In Equation (13), the terms on the
left-hand side represent the convection of the vorticity, and the �rst term on the right-hand side
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Figure 7. Sidewall shear stress distribution.

is the production by the anisotropy of Reynolds normal stress, the second term is production
by Reynolds shear stress, and the third term is viscous di�usion.
Previous studies have revealed that both production terms by anisotropy of Reynolds normal

stress and by Reynolds shear stress are larger in magnitude compared with the other terms in
the vorticity transport equation, Equation (13). For example, Gessner and Jones [43] found that
both production terms contribute to generating secondary currents in a square duct �ow. Later,
Nezu and Nakagawa [44] con�rmed this through experiments of open-channel �ows over
sand ribbons, and Demuran and Rodi [23] reached the same conclusion through the numerical
simulations of duct �ows using the ASM. More speci�cally, Gessner [45] and Ohmoto and
Hayashi [46] concluded that production by Reynolds shear stress is most responsible for the
generation of secondary currents.
Figure 8 shows the distribution of the streamwise vorticity in the transverse plane. In the

�gure, the red region with solid contour lines and the blue region with dashed contour lines
denote positive and negative vorticities, respectively. It can be seen in the �gure that the
vorticity is positive in most of the free surface region, representing the free surface vortex.
Two negative vorticies are also observed in the left corners close to the bottom and to the
free surface. The former denotes the bottom vortex, and the latter is formed due to inner
secondary currents.
In order to investigate the mechanism of the generation of secondary currents, a budget

analysis of the streamwise vorticity (�) was performed and the results are plotted in Figures 9
and 10. The �gures show that the magnitude of production by anisotropy of Reynolds normal
stress is about the same as that of production by Reynolds shear stress but their signs are
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Figure 8. Distribution of streamwise vorticity (unit: s−1).
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Figure 9. Generation of bottom vorticity: (a) y=H =0:25; and (b) z=H =0:2.

opposite. The two production terms appear to be much greater than convection term and
viscous di�usion term everywhere except for the regions close to walls and free surface. This
indicates that the balance between two production terms is responsible for generating the
secondary currents.
Figures 9(a) and (b) show the � budget distributions along the vertical line at y=H =0:25

and along the horizontal line at z=H =0:2, respectively. In the �gures, vorticity � is plotted
with each term in the vorticity transport equation to show its sign. In Figure 9(a), both
convection and viscous di�usion terms are seen to be extremely small except for the region
close to the bottom. The vorticity is observed to be negative for z=H¡0:32. Speci�cally,
for z=H¡0:09, it can be seen that production by anisotropy of Reynolds normal stress is
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Figure 10. Generation of free surface vorticity: (a) y=H =0:5; and (b) z=H =0:95.

negative and production by Reynolds shear stress is positive. The situation is the opposite
for z=H¿0:09. In addition, in Figure 9(b), it is observed that production by anisotropy of
Reynolds normal stress has the same sign as vorticity for y=H¡0:05 and production by
Reynolds shear stress has the same sign as the vorticity for y=H¿0:21. The foregoing results
indicate that both production terms by anisotropy of Reynolds normal stress and by Reynolds
shear stress play signi�cant roles in generating bottom secondary currents. The production by
anisotropy of Reynolds normal stress is important in the vicinity of the wall and production
by Reynolds shear stress is important in more distant regions from the wall. This is consistent
with the �ndings by DNS of square duct �ows by Huser and Biringen [47].
For the free surface vortex, a similar analysis was carried out. Figures 10(a) and (b) present

the � budget distributions along the vertical line at y=H =0:5 and along the horizontal line at
z=H =0:95, respectively. In Figure 10(a), a positive vorticity is observed for 0:6¡z=H¡1:0.
Speci�cally, it appears that productions by Reynolds shear stress and by the anisotropy of
Reynolds normal stress play key roles in generating secondary currents for z=H¡0:85 and
for z=H¿0:85, respectively. It is also interesting to note in the �gure that the convection
term is not zero while viscous di�usion is negligible except for the region close to the water
surface. This suggests that the convection term contributes to generating the free surface vortex
unlike the case of the bottom vortex. Also, for the duct �ow or the channel �ow without
free surface, previous studies of the �-budget analysis reported the same result that both
production terms are dominant over the entire domain except for the wall region [43, 47–50].
In Figure 10(b), a positive vortex and a negative vortex are observed for y=H¿0:08 and
for y=H¡0:08, indicating the outer and the inner secondary currents, respectively. For inner
secondary currents, production by anisotropy of Reynolds normal stress is important in the
region close to the sidewall, i.e. for y=H¡0:035, and production by Reynolds shear stress
is important in the region more distant from the sidewall, i.e. for 0:035¡y=H¡0:07. For
the outer secondary currents, production by anisotropy of Reynolds normal stress and the
convection term contribute to generating a vortex for y=H¿0:17. In the transition region where
vorticity changes its direction from inner to outer secondary currents, i.e. for 0:07¡y=H¡0:17,
production by Reynolds shear stress, convection, and production by anisotropy of Reynolds
normal stress contribute to generating the secondary currents.
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CONCLUSIONS

A Reynolds stress model is presented for the numerical simulation of fully developed turbulent
�ows in an open-channel. The Reynolds stress model is composed of Speziale et al.’s model
for the pressure–strain term and Mellor and Herring’s model and Rotta’s model for di�usion
and dissipation of Reynolds stress, respectively. The computed mean �ow and turbulence
characteristics were compared with the results of simulations as well as with previously-
reported experimental data. Comparisons revealed that the developed Reynolds stress model
successfully predicts the mean and turbulent features of open-channel �ows. Moreover, the
model reproduced the inner secondary currents at the juncture of the sidewall and free surface.
The inner secondary currents were also shown to signi�cantly increase the wall shear stress
near the free surface.
The mechanism by which secondary currents are generated was investigated by performing a

budget analysis of the streamwise vorticity. The �ndings showed that both production terms by
anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation
of bottom secondary currents. Speci�cally, the production by the anisotropy of Reynolds
normal stress plays a key role in the vicinity of the wall and production by Reynolds shear
stress is important in the region more distant from the wall. For the free surface vorticity, the
generating mechanisms of both outer and inner secondary currents could be explained through
the analysis. For outer secondary currents, production by anisotropy of Reynolds normal stress
and production by Reynolds shear stress are important in the generation of secondary currents
in regions close to the free surface and away from the free surface, respectively. This is
a common feature which can be applied to the generation of the inner secondary currents.
However, the convection term was shown to play an important role in the generation of outer
secondary currents unlike the case of the bottom secondary current.
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